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A key feature of many new computer architectures is that theyare composed of multiple tiles, each of which is
a fully capable processor. Tiled architectures are attractive alternatives to monolithic computer architecture designs
because they allow a larger design to be built from smaller modules and limit the number of wires that need to span
the entire chip. Examples of tiled architectures include many under development for the DARPA/IPTO Polymor-
phous Computer Architectures (PCA) program, including theMIT Raw machine [13], the Stanford Smart memories
project [8], and the University of Texas TRIPS machine [9].

The decoupled systolic architecture (DSA) represents a canonical abstract machine that encompasses many of
the key features of single-chip tiled architectures [4] including the PCAs and other emerging architectures such as
Scale [6], Wavescalar [12], and Synchroscalar [10].Stream algorithms are defined as the family of algorithms which
can achieve100 % computational efficiency on the DSA. The DSA and stream algorithms provide a rigorous analytical
framework for reasoning about the performance of algorithms on modern architectures. This framework is unique in
that it explicitly penalizes algorithmic implementationsthat make use of long wires and/or large local memories while
rewarding those algorithms that can efficiently execute using only a small, bounded amount of local memory and a
next-neighbor interconnect network. Thus, this frameworkmakes an excellent match for evaluating architectures faced
with the growing physical concerns of wire delay [3] and the energy dissipation of on-chip memory [2, 5].

Stream algorithms are therefore important because the existence of a stream algorithm for a particular problem
implies a scalable, computation, energy, and area efficientsolution to that problem on many real-world architectures.
Stream algorithms decouple memory access from computation, performing memory access on tiles on the periphery
of the chip and performing computation in a systolic fashionon the tiles in the interior of the chip. For a problem of
sizeN on anR×R array of tiles, the efficiency of the problem is the total number of operationsC(N) divided by the
product of the number of cyclesT (N, R) and the total number of memory tilesM(R) and compute tilesP (R),

E(N, R) =
C(N)

T (N, R) ∗ (M(R) + P (R))
. (1)

For a conventional architecture, the total number of tiles is equal to 1. A necessary condition forE(N, R) to scale with
the size of the array is thatM(R) be asymptotically smaller thanP (R). An algorithm that meets the requirement that
P (R) = o(M(R)) is decoupling efficient, because it efficiently decouples memory accesses from computation [11].
An algorithm iscomputation efficientif limσ,R→∞ E(σ, R) = 1 whereσ = N/R. Computation efficient algorithms
implemented on an array of fixed size scale toward an asymptotic limit on performance as data size increases, and this
asymptotic limit becomes larger as the array sizeR increases. Stream algorithms are therefore those algorithms that
meet the computation efficiency condition. Stream algorithms for matrix multiplication, QR factorization, convolution,
and other applications have been discovered and implemented on the Raw cycle accurate simulator [4]. Comparison of
these algorithms with conventional implementations on conventional architectures such as the PowerPC G4 [7] shows
that stream algorithms have the potential to achieve higherefficiency on many different problems.

This presentation focuses on understanding when a stream algorithm exists for a given kernel. We do so by con-
sidering the directed acyclic graph (DAG) for a particular implementation of the kernel. Nodes in the DAG represent
inputs, outputs, or intermediate products of the algorithm, and edges from nodeA to nodeB in the DAG show that
A is used to computeB. We can characterize the DAG for an algorithm by the ratio of inputs,W , to the number of
intermediate products,Q, for which any one value is directly required. For example, in an algorithm to multiply two
N × N matricesA andB, elementi, j of the output matrixC is computed asci,j =

∑N

k=1
aikbkj . That is, for each

output, there areW = 2N inputs used and a total ofQ = N intermediate products (the partial sums) computed. The
stream algorithm implementation of matrix multiply meets the compute efficiency condition. Matrix multiplication is
an example of a kernel with aconstant ratioof W to Q. All known algorithms – including QR, SVD, convolution –
with a constant ratio ofW to Q have implementations that meet the compute efficiency condition.

In contrast, consider an algorithm to compute the FFT of a length-N vector. To compute any particular output of the
FFT, allN inputs are required, and (as is well known) each input directly contributes tolog

2
(N) intermediate products.

1This work sponsored by the Defense Advanced Research Projects Agency under Air Force Contract F19628-00-C-0002. Opinions, interpreta-
tions, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.
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Figure 1: Comparison of Raw FFT throughput, measured in the Raw cycle-accurate simulator, to FFTW throughput
on the PowerPC G4 and Xeon.

For the radix-2 FFT algorithm, the ratio ofW = O(N)to Q = O(log
2
(N)) is asymptoticallygreaterthan a constant.

Because any stream algorithm for the FFT must meet the decoupling efficiency condition, we cannot use local memory
to buffer the large number of inputs. Instead inputs must reside in the network while compute tiles are working. For the
FFT, with aW/Q = O(N)/O(log

2
(N)), this implies that the maximum distance that any piece of data must travel is

greater than the number of intermediate calculations in which the data is used. Therefore, communication costs cannot
be effectively amortized in the systolic implementation ona tiled architecture. The factorT in the denominator of the
efficiency expression (1) will have a lower bound that is limited by the size of the array, meaning that the efficiency
cannot approach a limit of 1 as the array sizeR increases. A stream algorithm implementation for the FFT isstill
an open research problem. Stream algorithm techniques can be used to implement an efficient implementation of the
radix-4 FFT for a 4x4 tile array, but this implementation is not scalable and performance will be worse on larger Raw
systems. Simulated throughput of this algorithm is compared to the throughput of FFTW [1] on the 2.8 GHz Pentium
4 and 733 MHz G4 in Figure 1. The Raw FFT achieves high performance for large data sizes, and offers performance
that is more stable across a range of data sizes.

In this talk, we will describe the implementation of FFT, QR factorization, and CFAR kernels on the Raw simulator
and Raw board. We examine the performance of these kernels and compare to conventional implementations on the
Pentium and G4 architectures. Finally, we characterize theDAG of each kernel and discuss how the DAG influences
the implementation on Raw and on tiled architectures in general.
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Tiled Architectures

• Monolithic single-chip architectures are becoming rare in 
the industry

– Designs become increasingly complex
– Long wires cannot propagate across the chip in one clock

• Tiled architectures offer an attractive alternative
– Multiple simple tiles (or “cores”) on a single chip
– Simple interconnection network (short wires)

• Examples exist in both industry and research
– IBM Power4 & Sun Ultrasparc IV each have two cores
– AMD, Intel expected to introduce dual-core chips in mid-2005
– DARPA Polymorphous Computer Architecture (PCA) program
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PCA Block Diagrams
TRIPS (University of Texas)

Smart Memories (Stanford)

A
LU

RF
I$
PC

D$

RAW (MIT)

• All of these are examples of tiled 
architectures

• In particular, RAW is a 4x4 array of tiles
– Small amount of memory per tile 
– Scalar operand network allows delivery 

of operands between functional units
– Plans for a 1024-tile RAW fabric

• This research aims to develop 
programming methods for large tile 
arrays
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Outline

• Introduction
• Stream Algorithms and Tiled Architectures
• Mapping Signal Processing Kernels to RAW
• Conclusions
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Stream Algorithms for Tiled 
Architectures

Decoupled Systolic Architecture

M(R) edge 
tiles are 
allocated to 
memory 
management

P(R) inner tiles 
perform 
computation 
systolically using 
registers and static 
network

lim E(σ,R) = 1
σ,R → ∞

Compute Efficiency Condition:

where σ = N/R

E (N,R)  =
C(N)

T(N,R)*(P(R) + M(R))

Stream Algorithm Efficiency:

where
N = problem size
R = edge length of tile array
C(N) = number of operations
T(N,R) = number of time steps
P(R) + M(R) = total number of tiles

Stream algorithms achieve high efficiency by:
–Partitioning the problem into sub-problems
–Decoupling memory access from computation
–Hiding communication latency

Stream algorithms achieve high efficiency by:
–Partitioning the problem into sub-problems
–Decoupling memory access from computation
–Hiding communication latency

TimeTime SpaceSpace

R
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Example Stream Algorithm:
Matrix Multiply

• Calculate C=A B
– Partition A into N/R row blocks, 

B into N/R column blocks

• Computations can be pipelined
– Cost is 2R cycles to start and drain 

the pipeline
– R cycles to output the result

Memory 
tiles

= A BC

• In each phase, compute R2 elements of C
– Involves 2N operations per tile
– N2/R2 phases

N = problem size
R = edge length of tile array

Compute 
tiles

Compute 
tiles

Efficiency Calculation:

E (N,R)  =
2N3

(2N(N2/R2)+3R)(R2+2R)

=
2σ3

2σ3+3

R

R+2
lim E(σ,R) = 1

σ,R → ∞

for σ = N/R

Achieves high efficiency as array size (N) & data size (R) growAchieves high efficiency as array size (N) & data size (R) grow
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Matrix Multiply Efficiency

• Stream algorithms achieve high efficiency on large tile arrays
• We need to identify algorithms that can be recast as stream algorithms

• Stream algorithms achieve high efficiency on large tile arrays
• We need to identify algorithms that can be recast as stream algorithms

Assume a 4x4 decoupled systolic 
architecture or RAW surrounded by 
memory tiles (max efficiency=66%)

Scale the number of overall tiles
Smaller percentage of tiles devoted to 
memory leads to  higher efficiency
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Analyzing the Matrix Multiply

Consider the matrix multiply computation in more detail
To compute cij, row i of A is multiplied by column j of B
• 2N inputs required 
• 2N operations required

• Examine the directed acyclic graph 
(DAG) for the matrix multiply

• For each output         produced
• There are W inputs       required (O(N))
• The input i is used        Qi times (O(N))

– These are intermediate products
• The matrix multiply is an example of an 

algorithm with a constant ratio of input 
data (W) to intermediate products (Q)

a11
a12

a21
a22
b11
b21
b12
b22

c11

c12

c21

c22

A constant W/Q implies a degree of scale-invariance:
• Communication and computation maintain the same ratio as N increases
• Therefore the implementation can efficiently use more tiles on large problems 

A constant W/Q implies a degree of scale-invariance:
• Communication and computation maintain the same ratio as N increases
• Therefore the implementation can efficiently use more tiles on large problems 
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Outline

• Introduction
• Stream Algorithms and Tiled Architectures
• Mapping Signal Processing Kernels to RAW

– QR Factorization
– Convolution
– CFAR
– FFT

• Conclusions 
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RAW Test Board
• Write kernels to run on prototype RAW board

– 4x4 RAW chip, 100 MHz
• MIT software includes cycle-accurate simulator

– Code written for the simulator easily runs on board
– Initial tests show good agreement between simulator and board

• Expansion connector allows direct access to RAW static network 
– Firmware re-programming required
– External FPGA board streams data into and out of RAW
– Design streams data into ports on corner tiles
– Interface is not yet complete so present results are from simulator

Memory tiles
• Store intermediate values
• Stream data to and from computation tiles
Computation tiles
• Perform computation systolically
• Use static network and registers

I/O tiles
• Stream data to and from outside world

Typical RAW configuration for a 
stream algorithm on prototype board:

Typical RAW configuration for a 
stream algorithm on prototype board:
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QR Factorization Mapping

Data flow during rotation computation Data flow during rotation application

For each block of columns
compute Givens rotations 
apply Givens rotation to A

Algorithm to compute A=QR:

1

I/O

Memory

Compute

Unused

2 3

For a matrix A with six columns:

Column block

• I/O tiles are only used at start and end of process 
– In-between, data is stored in memory tiles

• This shows the flow for odd-numbered column blocks
– For even-numbered blocks of columns, data flows from bottom memory 

tiles to the top of the array

Store RStore R

Store 
rotations
Store 
rotations

Pass 
rotations
Pass 
rotations

Store R, 
updated A
Store R, 
updated A
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Complex QR Factorization Performance

The QR  
factorization has 
a constant ratio
of input data (W) 
to intermediate 
products (Q)

M(R)

P(R)

R

N80

R N80
4 64
8 128
16 256
32 512

Projected matrix size N80
to achieve 80% efficiency 
on compute tiles P(R):

The QR factorization efficiency scales to 
100% as array and data size increase

The QR factorization efficiency scales to 
100% as array and data size increase
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Convolution (Time Domain) Mapping

Input Vector

Filter

Input 
Vector
Filter

Result

Compute Tiles Memory and I/O Tiles

Result n+k-1…10

k-1…10

n-1…10

n+k-1…10

k-1
10

n-1…10

Stream 0

32 54 …
76 98 10 …11

Ti
le

 1

Ti
le

 2

Ti
le

 3

Ti
le

 4

Ti
le

 5

Ti
le

 0

Stream 1

• Filter coefficients distributed cyclically to tiles
– Each compute tile convolves the input with a subset of the filter
– Assume n (data length) > k (filter length)

• Each stream is a different convolution operation
– In multichannel signal processing applications we rarely perform 

just one convolution
• 12 of 16 tiles used for computation

– Maximum 75% efficiency
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Convolution Performance

• Convolution achieves good performance in RAW simulator
• Longer filters and input vectors are more efficient
• Longer input vectors are also more easily mapped to more 

processors
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CFAR Mapping

C(i,j,k)

G NcfarNcfar G

T(i,j,k)

• Constant False-Alarm Rate (CFAR) Detection
• For each output:

– There are W = O(Ncfar) inputs required
– The input i is used Qi = O(1) times

• Constant False-Alarm Rate (CFAR) Detection
• For each output:

– There are W = O(Ncfar) inputs required
– The input i is used Qi = O(1) times

• For a long stream, CFAR requires 7 ops/cell
• Consider dividing up a stream over R tiles

– 7/R operations per tile
– N communication steps per tile
– Communication quickly dominates computation

• Instead consider parallel processing of streams
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CFAR Mapping

C(i,j,k)

G NcfarNcfar G

T(i,j,k)

• Constant False-Alarm Rate (CFAR) Detection
• For each output:

– There are W = O(Ncfar) inputs required
– The input i is used Qi = O(1) times

• Goal is to move data through the chip as fast as 
possible

• Constant False-Alarm Rate (CFAR) Detection
• For each output:

– There are W = O(Ncfar) inputs required
– The input i is used Qi = O(1) times

• Goal is to move data through the chip as fast as 
possible

RAW Chip

• Data cube is streamed 
into RAW using the static 
network

• Corner input ports 
receive data

• Each quadrant processes 
data from one port

• One row of range data 
(“one stream”) is 
processed by a single tile

• Results gathered to 
corner tile and output

Nrg Range Gates

• This implementation does not 
scale with array size R

– As R increased, there would be a 
greater latency involved in using 
tiles in the center of the chip
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CFAR Performance

• CFAR achieves an efficiency of 11-15%
– Efficiency on conventional architectures = 5-10%, similarly optimized
– RAW implementation benefits from large off-chip bandwidth

• Compute tile efficiency does not scale to 100% as for Stream 
Algorithms (matrix multiply, convolution, QR)

Stream fits in cache Stream does not fit in cache
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Data Flow for the FFT

For each of (log2N) stages
compute N/2 “butterflies” 

Cooley-Tukey Radix-2 FFT: a

b

a+ωb

a-ωb

Radix-2 butterfly:
• 2 complex inputs
• precomputed weight ω
• 10 real operations

• For each output         produced
• There are W inputs       required (O(N))
• The input i is used        Qi times 

(O(log2N))
– These are intermediate computations

0 0

4

2

6

1

5

3

7

• W/Q is O(N/log2N)
– As N increases, communication requirements grow faster 

than computation
– Therefore we expect that the Radix-2 FFT cannot efficiently 

scale  
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Mapping the Radix-2 FFT to a Tile Array

• For each butterfly:
– 4 + (R-1) cycles to clock inputs across the array
– 10/R computations per tile
– When R=2, tiles are used efficiently

 Can overlap computation (5 cycles) and communication (5 cycles)
– When R>2, cannot use tiles efficiently

 Latency to clock inputs > number of ops per tile
• For each stage:

– Pipeline N/2 butterflies on R rows or columns
• Overall efficiency limited to 50%

– 2x2 compute tiles + 4 memory tiles

0
1
2
3

4
5
6
7

6 2 4 0

7 3 5 1

Stage 1:

3
1
2
0

7
5
6
4

0
2
1
3

4
6
5
7

Stage 2: Stage 3:

0 4

1 5

0 1

2 3

0 4 1 5 5 4 1 0
0
2

4
6

2 6 3 7 7 6 3 2
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Mapping the Radix-R FFT to a Tile Array

Idea: use a Radix-R FFT algorithm on an R by R array

• A Radix-R FFT algorithm 
– Uses logRN stages
– Compute N/R Radix-R butterflies per stage

• Implement the radix-R butterfly with an R-point DFT
– W, Q both scale with R for a DFT
– Allows us to use more processors for each stage
– Still becomes inefficient as R gets “too large”
– Efficiency limit for radix-4 algorithm = 56%
– Efficiency limit for radix-8 algorithm = 54%

• Radix-4 implementation:
– Distribute a radix-4 butterfly over 4 processors in a row or column
– Perform 4 butterflies in parallel
– 8 memory tiles required
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Radix-4 FFT Algorithm Performance

Simulated Radix-4 FFT on 4x4 RAW plus 8 memory tiles

• Example: Radix-4 FFT algorithm achieves high throughput on 4x4 RAW
– Comparable efficiency to FFTW on G4, Xeon

• Raw efficiency stays high for larger FFT sizes G4, Xeon FFT results from 
http://www.fftw.org/benchfft
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Classifying Kernels
Kernels may be classified by the ratio W/Q
• Constant Ratio: W = O(N), Qi = O(N)

– e.g., Matrix Multiply, QR, Convolution
– Stream algorithms: efficiency approaches 1 as 

R, N/R increase
• Sub-Linear Ratio: W=O(N), Qi < O(N); 

– e.g., FFT
– Require trade-off between efficiency and 

scalability
• Linear Ratio: W = O(N), Qi = O(1); 

– e.g., CFAR
– Difficult to find efficient or scalable 

implementation

Constant

Linea
r

W/Q

Sub-linear

Data set size, N

Examining W/Q gives insight into whether a stream algorithm
exists for the kernel

Examining W/Q gives insight into whether a stream algorithm
exists for the kernel



MIT Lincoln LaboratoryHPEC 2004-24
JML 28 Sep 2004

Conclusions

• Stream algorithms map efficiently to tiled arrays
– Efficiency can approach 100% as data size and array size 

increase
– Implementations on RAW simulator show the efficiency of 

this approach
– Will be moving implementations from simulator to board

• The communication-to-computation ratio W/Q gives insight 
into the mapping process

– A constant W/Q seems to indicate a stream algorithm exists
– When W/Q is greater than a constant it is hard to efficiently 

use more processors
• This research could form the basis for a methodology of 

programming tile arrays
– More research and formalism required
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